

Carbon - what is all the fuss about?

- **Soil Carbon**
- **Carbon Emissions**
- **Carbon Sequestration**

O horizon A horizon E horizon **B** horizon C horizon R horizon

Productivity

Carbon Footprint

Carbon Neutral

Adaptation

Carbon facts

Carbon sequestration refers to long term storage of carbon (C) from the atmosphere in soil or vegetation (via photosynthesis)

- Quantity of soil organic carbon in 0-30 layer (= carbon stocks [t/ha]) is about:
 - twice the amount of C in atmospheric CO₂, and
 - three times that of above-ground vegetationSome limitations to soil carbon sequestration
 - The quantity of C that can be stored in soils is finite
 - The process is reversible
 - The best return on investment is from your poorest soils

More facts

- About 20% of total GHG emissions from irrigated production with N fertiliser
 - This is due to CO₂ and N₂O emissions during manufacturing, and
 - Direct and indirect N₂O emissions from its use
- **❖** About 70% of total GHG emissions from irrigated cropping are due to energy consumption, especially irrigation
- The annual CO₂ release from deforestation is about 25% of that from fossil fuel burning
 - This is due to loss of carbon from vegetation and soil

In agriculture overall, about 70% of emissions are due to methane

Why is more soil organic carbon good?

✓ Better soil condition and function

- Reduction of energy and fertiliser use
- Improved soil structure and thus water holding capacity and root volume
- Improvement of soil life and disease tolerance
- Improved nutrient holding and cycling

✓ Potential market benefits

- Promotion of sustainable practices & resource use efficiency
- Resilience to future markets & climate (adaptation)
- Risk mitigation (industry/consumer demand)

Organic matter/carbon feeds soil life

Organic matter = organic carbon x 2

How to sequester soil carbon

Increase net photosynthesis

- ✓ (New) areas of permanent vegetation trees or pasture
- ✓ Growing 'better' crops and or cover crops more biomass, and returning as much biomass as possible back into the soil

Add organic amendments

How much organic carbon a soil can naturally accumulate depends on soil type and climate.

Low accumulation: light soils, dry climate, hot or cold temperatures

High accumulation: heavy soils, sufficient rainfall, temperate climate

Sequestration = CO₂ removal from the atmosphere can only happen once, at the place of original plant growth

How to slow down the loss of soil carbon

Vegetable rotation, including, potatoes, carrots and onions & grazing

Meet the experts

- **Nitrous Nelly**
- Methane Man
- Carbon Kid

Global Warming Potentials

 CO_2

"CO₂ equivalent" is the standard measurement, which accounts for global warming potentials of the various greenhouse gases.

What do Carbon Calculators tell us?

- They show which processes increase or decrease atmospheric carbon equivalents
 - Methane emissions are high in grazing systems
 - Irrigation energy costs usually high in irrigated crops
 - N₂O emissions may be higher than expected
 - Carbon sequestration options are often not so great

Vegetable emission carbon tool (G-GAF): http://www.piccc.org.au/resources/Tools

Landscape options and opportunities for carbon abatement calculator:

https://looc-c.farm/

Carbon farming definitions

- Carbon footprinting refers to the amount of emission (CO₂-e) produced by an activity or business
 - This refers to direct and indirect emissions from on farm AND supply chain
 - <u>Carbon calculators</u> can be used to measure Carbon Footprints
 - <u>Carbon Neutrality</u> can be achieved when all emissions of a 'Footprint' are avoided or offset
- Life cycle assessments look at environmental, social and economic impacts of a production system or product
 - This starts with the raw materials stage through to processing, transport, use, re-use, recycling or disposal

