NURTURING CROPS

VEGETABLE CROP NUTRITION SERIES Preparing and managing crop nutrition programs Webinar 3

Bruce Scott, EE Muir & Sons, Doris Blaesing, RMCG, Gordon Rogers, AHR

www.soilwealth.com.au

Topics – the decision process

- Start with thinking about soil conditions & planting time(s)
- Review the soil test to ID limitations and imbalances
- What is the yield potential?
- How much nutrient will the crop remove?
- How much nutrient should you apply, when, where and how?
- Select fertilisers and calculate rates
- Monitor progress of the crop
- How much nutrient did the crop remove?
- Review and adjust for the next crop

The first step

Paddock review to determine what may influence nutrient uptake

- Paddock history/rotation crop / cover crop residues and or soil amendments may contribute or fix nutrients
- Tillage history and plans
- Soil texture & OC% will influence nutrient holding capacity
- Soil structure will influence the effective rootzone, potential leaching or surface run-off
- In paddock variations
- Irrigation management ability to fertigate
- Weather forecast temperatures, rainfall
- Soil test result

Yield potential – aim for optimum pack-out

Site, soil and crop factors influence yield potential.

Yield potential influences crop removal and thus the amount of nutrients needed.

Site, Crop & Soil Factors

Basics of a fertiliser program

• Develop the 'Best Bet' nutrition program by:

- Adjusting soil deficiencies and imbalances pre-plant as much as possible based on soil tests and site specific factors
- Using yield potential and crop uptake/removal figures to determine crop needs

Consider

- Mobility / movement of different nutrients, nutrient interactions e.g. cations, P & Zn, trace metals, EC and pH
- Specific nutrient needs of the crop
- Soil related constrains, rootzone restrictions

Basics of a fertiliser program

Also think about:

- Crop requirements at different growth stages
- Rooting depths, root distribution
- Crop and variety specific needs
- Available application methods and fertilisers
- Monitoring actual nutrient uptake during early growth

Carrot nutrition program approach

Carrot growth stages: 100 - 120 days plus to maturity

Nutrient requirements of the carrot crop

- Paddock assumption: Well structured, free draining alluvial soil, balanced nutrient levels within desirable ranges, pH 6.5, no salinity issues, or rootzone restrictions, overhead sprinkler irrigation, no water limitations
- Seeding rate: about 800,000 (seeds/ha)
- Expected yield: 60-80 t/ha
- Optimum pH range: 6-7
- Choice of fertilisers: no chloride fertilisers Cl severely reduces carotene content

Crop removal of carrots

A fertiliser 'recipe'

Ν	Р	Κ	Ca	-	Mg	ka /ha
120	44	250	70		30	ку/па

Crop removal (kg/t) harvested roots

Ν	Р	K	Са	Mg	S
2	0.4	3.7	0.6	0.5	0.45

Crop removal (kg/ha) depending on yield

Yield target t/ha	Ν	Р	K	Са	Mg	S
60	120	24	222	36	30	27
70	140	28	259	42	35	32
80	160	32	296	48	40	36

Crop removal of carrots by yield level

Where to find removal rates

IPNI Crop Nutrient Removal Calculator

http://www.ipni.net/article/IPNI-3346

or

Calculate your own

Also check <u>http://www.fertilizer.org/</u> for information

Rules for balanced soil

	Ν	Р	K	Ca	Mg	S
Target yield 70 t/ha	Match removal rates, reduce for high OM soils, increase for depleted soils	2-3 x removal rate, potentially more on P- fixing soils	Match removal, reduce by up to 40% considering soil reserves & clay content	Up to 2 x removal rate, reduce in high Ca soils	Match removal, reduce in high Mg soils	Match removal, increase for depleted soils
Removal rate kg/ha	140	28	259	42	35	31.5
Total fertiliser kg/ha	140	48	259	84	35	31.5
Pre-plant fert	20%	100%	80%	25%	70%	20%
% and kg/ha	28	48	207	21	25	6

Consider nutrients in soil amendments and rotation

Top dressing by growth stage

Stage	Ν	Р	K	Ca	Mg	S
4-5 leaf stage (kg/ha)	25%		0%	30%	10%	20%
	35		0	25	3.5	6
6-8 leaf stage (kg/ha)	25%	As required	0%	25%	10%	30%
	35	plant testing	0	21	3.5	9.5
Early bulking (kg/ha)	30%		20%	20%	10%	30%
	42		52	17	3.5	9.5

• Trace element foliar applications based on known soil test issues and

- Plant testing at 4-5 leaf stage
- Boron is important.
- Other nutrients can be applied as foliar fertilisers

See <u>https://www.agric.wa.gov.au/fertiliser-calculator</u> for help with converting nutrient percentage in common fertilisers and application rates into kg/ha of nutrients applied.

A Lettuce nutrition case study

Location: Werribee

Crop: Iceberg Lettuce

Transplants: 60,000 to 70,000 per hectare

Duration: 8 weeks

Main Challenges: Salinity/ Sodicity, low OC%, high available soil P

Lettuce growth stages

Head lettuce: 50 – 80 days to maturity Small root system

Clay soil – Werribee

ANALYSIS		UNITS	Result	Comments
Phosphorus	(Olsen)	mg/kg	194.2	high level
Potassium	(Colwell)	mg/kg	513.0	high level
Sulphur	(KCL40)	mg/kg	143.0	high level
pH	(1:5 water)		8.1	slightly alkaline
pH	(CaCl2)		7.7	
Salinity (EC)	(1:5 water)	dS/m	0.49	higher than normal
Soil Texture			Clay loam	medium-heavy textured
Organic Carbon		%	1.28	marginal-low organic matter
Nitrate		mg/kg	38.0	moderate
Ammonium		mg/kg	6.0	moderate
Copper	(DTPA)	mg/kg	4.27	moderate
Zinc	(DTPA)	mg/kg	8.59	moderate
Manganese	(DTPA)	mg/kg	8.8	moderate
Iron	(DTPA)	mg/kg	66.9	moderate
Boron	(HWS)	mg/kg	3.6	moderate-high
Phosphorus	(Colwell)	mg/kg	506.0	
Calcium	(Exch)	meq/100 g	15.65	moderate-high level
Magnesium	(Exch)	meq/100 g	2.99	moderate level
Sodium	(Exch)	meq/100 g	2.41	high, potentially harmful
Potassium	(Exch)	meq/100 g	1.35	moderate level
Aluminium	(Exch)	meq/100 g	< 0.01	low and harmless
Calculations				
Sum of cations	(CEC)	meq/100 g		moderate
Calcium/Magnesium ratio				favourable
Sodium % of cations	(ESP)		10.8%	high, potentially harmful
Aluminium % of cations			< 0.1%	low and harmless

Lettuce nutrient removal calcs

Lettuce nutrient removal (kg/t)									
Ν	Р	K	Ca	Mg					
3	0.4	3.3	0.7	0.2					

Lettuce nutrient removal by yield level (t/ha)

Yield target t/ha	Ν	Р	К	Ca	Mg
50	150	20	165	35	10
40	120	16	132	28	8
30	90	12	99	21	6

Suggested lettuce programe (8 week crop)

	Yield target t/ha	Ν	Ρ	К	Ca	1	Mg	
	50	150	20	165	35	5	10	
					N	Ρ	К	Ca
BASEDF @ 400 k	RESS: COMF g/ha banded	48	20	140				
SIDEDR @ 200 k	ESS: CALCI g/ha about 2		31			39		
FERTIG @ 50 kg	ATION: CAL		47			58		
FERTIGATION: POTASSIUM NITRATE@ 50 kg/ha about 4 weekly apps2777								

TOTAL NUTRIENTS

<u>153 20 217 97</u>

Calculate fertilizer rates

Start with nutrient requirement e.g. basal pre-plant *NPK (kg/ha) 48 : 20 : 56*

Fertiliser rate (kg/ha) = kg nutrient /ha * 100

% nutrient in fertiliser

e.g. Nitrogen from Compound (NPK 12:5:14)

- = 48/12*100
- = 400 kg/ha

See <u>https://www.agric.wa.gov.au/fertiliser-calculator</u> for help with converting nutrient percentage in common fertilisers and application rates into kg/ha of nutrients applied.

Monitoring progress: Lettuce Werribee

E.E. Muir & Sons	L ettu San	ce S	ap A i 20/3/0	naly 6	sis R Sol	lesu uth	lts-S	Seas	ion 2	2006	i – W	errit	<u>)ee</u>
Blocks	*N	P	K	Ca	Mg	S	Zn	B	Cu	Fe	<u>Mn</u>	Na	Мо
ICEBERG I	6 3609	218	2947	261	75	59	1.26	0.85	1.78	1.60	0.56	281	<0.02
ICEBERG I growth stage 1.8	6 4950	180	3217	438	107	70	1.39	0.57	1.66	5.08	0.82	283	0.030
				•	•	•		•	•		•	•	
Normal range	2000-	180-	2200-	250-	80-	80-	> 1	0.3-	> 1	> 1	> 0.5	<200	> 0.01
_	3500	300	3500	400	250	150		1					

* all nutrient levels expressed in ppm

Summary

Relatively low sodium and good levels of most nutrients.

Most nutrient levels show the typical decline expected with increasing size, although there are slight increases in phosphorus and boron levels, usually a sign of good rootzone conditions.

Nitrogen is slightly high, whereas potassium is normal and magnesium is slightly lower than normal – inputs of potassium nitrate are recommended to help with heart development and the Mag-I-Nite formulation has the advantage of magnesium to maintain good leaf greenness.

How much nutrient did the crop remove?

Lettuce yield = 87 t/ha (60,000 heads/ha x 1.45 kg/head)

Average Dry matter = 4.1% (95.9% water)

Total dry matter removed = 3,567 kg/ha (87,000 kg/ha x 4.1%DM ÷ 100)

Nitrogen in crop = 3.9% (from tissue test)

Nitrogen removed (kg/ha) = Total N in crop (%) x Total DM removed (kg) ÷100

Nitrogen removed (kg/ha) = 3.90 x 3,567 ÷ 100 = <u>139 kg/ha</u>

Now, do the same for the other nutrients...

Nutrient	Removal (kg/ba)	Soil Wealth
Nitrogen	139.11	Crop removal summary
Phosphorus	24.25	
Potassium	155.16	So you need to supply at least (kg/na):
Calcium	17.83	Nitrogen140Phosphorus25
Magnesium	6.78	Potassium 155
Sulphur	7.13	A PART STRAND
Manganese	0.075	
Copper	0.039	
Zinc	0.147	
Iron	0.497	Consider nutrient losses,
Boron	0.064	uptake efficiency, tie ups.
Sodium	12.84	Need to apply more
Chloride	46.01	

Summary considerations

- Nutrient uptake efficiency & limiting factors
 - Experience and knowledge of soil conditions and weather
 - Growth stages and expected root depth / distribution
 - Application method(s) and available fertilisers
 - Yield potential and CROP REMOVAL FIGURES
 - Soil management, mulching, green crops etc. may have a greater impact on nutrient uptake than fertiliser applications
 - Growing conditions and irrigation management may have a greater impact on nutrient uptake than fertiliser applications
 - Stress (soil water, air & soil temperature) will influence nutrient uptake significantly

NURTURING CROPS

Thank You

Doris Blaesing, dorisb@rmcg.com.au

Gordon Rogers, gordon@ahr.com.au

Join us for the next webinar on nutrients and disease interactions!

www.soilwealth.com.au

Typical nutrient management

1.

- *Phosphorus*: apply most as a basal pre-plant, consider P at 1st watering for transplants
- Potassium: apply 50-100% preplant then side dress/liquid/foliar, consider times of high demand
- **3.** *Nitrogen:* up to 30% N basal and the rest as side dressings or through irrigation/foliar. Match to plant development.
- 4. Calcium: apply soluble Ca in crop side dress/liquid/foliar
- 5. Sulfur and Magnesium: adjust soil levels, use sulfate form of fertilsers
- 6. *Micronutrients*: apply to soil pre-plant to correct deficiencies and/ or apply to crops as foliars. Can use chelates or soluble products.
- Lime or dolomite: apply pre-plant to correct soil pH. Use dolomite if Mg low. Use lime if Ca low.
- 8. Gypsum: use to supply Ca to the soil pH OK, or high.

Nutrient removal figures kg/tonne

Crop	Ν	Р	K	S	Са	Mg
Bean green	4.0	0.9	3.0	0.0	0.4	0.3
Broccoli	4.5	0.9	4.6	0.0	0.4	0.2
Cabbage Dutch	3.0	0.4	2.7	0.0	0.6	0.2
Capsicum	3.0	0.3	2.9	0.0	0.1	0.2
Carrot	2.0	0.4	3.7	0.0	0.6	0.5
Cauliflower	4.0	0.5	3.3	0.0	0.4	0.2
Celery	3.5	0.9	6.6	0.0	1.9	0.3
Cucumber	1.0	0.4	1.5			
Lettuce	3.0	0.4	3.3	0.0	0.7	0.2
Lettuce oakleaf	2.5	0.3	3.2	0.0	0.6	0.2
Pea green	5.0	0.7	3.3	0.0	0.6	0.4
Pumpkin	1.8	0.4	2.5	0.0	0.4	0.2
Spinach	4.2	0.6	0.6	0.0	1.3	0.6
Sweetcorn	4.0	0.9	4.4	0.0	0.1	0.4

Adjusting soil pH

- Each CaCO3 molecule neutralises 2H+ ions (CaCO3 + 2H+ Ca2+ + CO2 + H2O).
- x The molecular weight of CaCO3 = 100 g/mole, then the mass of 2.1 cmolc of pure CaCO3 is:
- (2.1 cmolc /kg soil) X (100 g/mol CaCO3) X (1 mol CaCO3/2 cmolc) X (0.01 molc/ cmolc) = 1.05 g CaCO3/kg soil.
- x The weight of 1 hectare of soil with bulk density of 1.3 Mg/m3 to 0.15 m depth is: 10,000 m2/ha X 0.15 m X 1.3 Mg/m3 = 1950 Mg soil/ha (or 1,950,000 kg soil/ha).
- x Then the amount of pure CaCO3 needed per hectare: (1.05 g CaCO3 /kg soil) X 1,950,000 kg soil /ha) = 2,047,500 g CaCO3 /ha or 2,047 kg pure CaCO3 /ha.
- Since the purity of the limestone is 90 per cent, then we need: (2047 X 100) / 90 = 2,274 kg or 2.274 t/ha of commercial limestone.