Soil Wealth

NURTURING CROPS

VEGETABLE CROP NUTRITION SERIES Soil Test Interpretation – Webinar 1

Doris Blaesing, RMCG

Gordon Rogers, AHR

Horticulture Innovation Australia

www.soilwealth.com.au

Soil Testing – Why?

- Smart choice -
- fertiliser type and amount selection, timing and placement
- Savings higher fertiliser recovery
- Knowledge realistic nutrition planning
- Net profit improve salable yield
- Environment control pollution

Factors affecting nutrient uptake

The limiting factor is not always nutritional!

Other factors are e.g.:

Crop stress Irrigation Weather Crop management

Nutrient function: refer fact sheet

NURTURING CROPS

Nutrient element functions in vegetable crops

Apart from water (H²O), carbon dioxide (CO²) and oxygen (O²), all plants require mineral nutrients in order to grow. Plant nutrients are commonly split into two categories:

- Major elements (macronutrients) that are required in relatively large quantities by plants, and
- Trace elements (micronutrients) that are essential for plant growth, but are only required in small amounts.

All elements must be available in a form that is useable by the plant, and in balanced concentrations that allow optimum plant growth.

The schematic image of a tomato plant shows a simple diagram of the plant and root interactions with the various available major and trace elements in the soil. Each of the necessary nutrients in plant growth has a different function in supporting the growth and performance of the plant.

What nutrient levels to aim for

Estimate potential nutrient availability and crop response

Soil Test

How nutrients are held in soils

Positively charged *cations* are held on clay particles and humus

CEC and buffering

Cations: K⁺, Mg⁺, Ca²⁺, Zn²⁺, Fe²⁺, Mn²⁺, Cu²⁺

Anions leach easily

Anions: NO₃⁻, SO₄²⁻, BO₃³⁻, MoO₄²⁻, Cl⁻

Phosphorus: $H_2PO_4^-$ but complexes tightly with AI and Fe in acid soils and Ca in alkaline soils – immobile

How nutrients move through soil and uptake mechanisms

Processes by which nutrients move through the soil are:

Mass flow Diffusion Root Interception

Knowing these processes is important when preparing nutrient management plans!

Mass flow

Most NO_3^- and SO_4^{2-} move with water to the roots.

Plant transpiration provides needed driving force for root to uptake

This is the most efficient way nutrients move to the root zone.

Diffusion

Diffusion: movement from an area of high concentration to an area of low concentration

Root Interception

Most PO₄³⁻ and some Ca⁺⁺ and micronutrients reach roots via interception

3 processes run simultaneously

Nutrient mobility / movement

- Inorganic Nitrogen: highly mobile in soil: apply only some pre-plant (organic N is immobile)
- **Phosphorus**: highly immobile apply most pre-plant, but...
- **Potassium**: held on clay or humus particles. Can apply the full crop requirement pre-plant *or* in stages in light soils.
- **Calcium** and **magnesium**: held on clay or humus particles
- **Sulphur**: highly mobile in soil (leaching)
- **Zn, Cu, Fe, Mn**: all immobile in soil (cations)
- **B** and **Mo**: mobile in soils (anions)

also refer to Fact Sheets

Importance of healthy roots

<u>The</u> factor determining nutrient uptake is root length density

Soil Sampling: Refer to fact sheet

- Sample 0-15cm and 15-30cm or 0-30cm depth or according to soil profile
- Take at least 20 sub samples and mix together
- Select 1 x 500g composite samples and send to lab ASAP
- Nutrient stratification e.g. reduced tillage
- Sample for available NO₃ and NH₄: 0-30cm or 0-60cm

Consider within paddock variations

Aerial Crop Imaging 3 March 2015 Addison Hill

25

25

50

75 m

Soil test interpretation fact sheet

Refer to the soil test interpretation fact sheet for a detailed and comprehensive explanation of how to *read and interpret* a soil test report.

Briefly...

Soil test interpretation: desirable ranges

Nutrient		v. low	low	ideal	high
pH (in water)		5	5.5	6 - 7	8
pH (in CaCl ₂)		4.5	5	5.5 - 7	7.5
Nitrate – N (topsoil)	ppm	<10	20	40 - 50	>60
Phosphorus (Colwell)	ppm	<20	30-60	70 - 100	>100
Phosphorus (Mehlich 3)	ppm	<20	20-40	40-80	>80
P Buffer Index (PBI)				<80	
Sulphur	ppm	2	5	10 - 20	15
Copper	ppm	<0.3	<2	2 - 20	>20
Zinc	ppm		<1	1 - 20	>20
Manganese	ppm		<5	10 - 50	>50(tox)
Iron	ppm		<10	10 - 200	>200
Boron	ppm	0.1	0.4	0.5 - 4	>5
Molybdenum	ppm	0.5	1	2	>2
Organic carbon	%	<0.6	1.1	2 – 2.3	>3
Conductivity (EC _{1:5})	dS/m	< 0.15 dS/m (depends on soil and crop)			
Chloride	ppm	50	100	<200	>200

Colwell P and K levels are for medium textured soils

Soil test desirable ranges guide – Cations

Plant uptake of calcium, magnesium and potassium in strongly influenced by their proportions in the soil. *Imbalances can cause plant deficiencies.*

Aim: Potassium 5%, Calcium:magnesium ratio = 3-5:1

Nutrient		v. low	low	good	high
Ca/Mg Ratio		<2	3	3-5	>5
Potassium	meq/100g	0.2	0.3	0.5-0.7	1
Potassium	% of cations	<1	3	5	>8
Calcium	% of cations	50	65	75	>80
Magnesium	% of cations	<5	<10	10-20	>20
Sodium**	% of cations	<1	<3	<4	>6
Aluminum**	% of cations	<0.1	<0.5	<1	>1

* For sodium and aluminium, the lower the better

expressSoil Results					
Analyte	Units	Result	Optimal Range	Status	
pH (H₂O)	(pH)	6.66	6-7	Neutral	
pH (CaCl₂)	(pH)	6.04	5.3 - 6.5	Neutral	
EC	dS/m	0.11	0 - 0.15	Satisfactory	
Lime requirement	t/ha				
ESI	units	0.062		High	
Total Carbon	%	5.291			
Total Nitrogen	%	0.341			
Carbon:Nitrogen Ratio	(ratio)	15.504			
Organic Matter	%	8.1		Very High	
M3 PSR	(ratio)	0.10	0.06 - 0.23	Satisfactory	
Phosphorus	ppm	166.60	40 - 90	Very High	
Potassium	ppm	265.91	245 - 400	Satisfactory	
Sulphur	ppm	17.2	12 - 45	Satisfactory	
Calcium	ppm	2358.23	1620 - 2700	Satisfactory	
Magnesium	ppm	208.51	200 - 400	Satisfactory	
Sodium	ppm	65.85	20 - 85	Satisfactory	
Chloride	ppm	20.95	0 - 200	Satisfactory	
Zinc	ppm	4.81	2.2 - 11	Satisfactory	
Copper	ppm	2.32	2.5 - 10	Low	
Boron	ppm	0.69	2.2 - 6	Very Low	
Manganese	ppm	10.5	18 - 70	Low	
Iron	ppm	74.132	35 - 230	Satisfactory	
CECe	meq/100g	17			
Calcium	meq/100g	11.8 (69.4%CEC)	8.1 - 13.5	Satisfactory	
Potassium	meq/100g	0.7 (4.1%CEC)	0.6 - 1.0	Satisfactory	
Magnesium	meq/100g	1.7 (10.0%CEC)	1.7 - 3.3	Satisfactory	
Sodium	meq/100g	0.3 (1.8%CEC)	0.1 - 0.4	Satisfactory	
Base Saturation	%	85.3	80 - 87	Satisfactory	
Exchangeable Acidity	meq/100g	2.5 (14.7%CEC)	13 - 20 %CEC	Satisfactory	
Aluminium Saturation	%	0.00			
Ca:Mg Ratio	(ratio)	6.94	3 - 5	Very High	
K:Mg Ratio	(ratio)	0.4	0.3 - 0.5	Satisfactory	
Active Carbon	ppm	365.0			
WSA	%	14.9			

Nutrient Status and Imbalances:

	Desired Level (kg/ha)	Measured Level (kg/ha)
Phosphorus	24.6	63.0
Potassium	113.4	100.5
Sulphur	10.77	6.50
Calcium	816.5	891.4
Magnesium	113.4	78.8
Boron	1.5	0.3
Iron	50.09	28.02
Manganese	16.6	4.0
Copper	2.4	0.9
Zinc	2.5	1.8
Nitrogen		20.10

Soil Cation Composition (as % CECe)

Develop a fertiliser program

- 1. Determine the crop nutrient requirement (kg/ha)
 - Soil test: deficiencies and imbalances
 - Crop removal: recommendations
 - **Experience**: previous crops and soil tests
- 2. Fertiliser program considerations:
 - Soil texture, organic carbon, rotations
 - Mobility / movement of different nutrients, nutrient interactions
 - Crop requirements at different growth stages
 - Available application methods and fertilisers
- 3. Monitor crop using *leaf/sap testing*
- 4. More on this in another Webinar!

Nutrient removal: kg nutrient /tonne crop

Сгор	N	Р	K	S	Ca	Mg
Bean green	4.0	0.9	3.0	0.0	0.4	0.3
Broccoli	4.5	0.9	4.6	0.0	0.4	0.2
Cabbage Dutch	3.0	0.4	2.7	0.0	0.6	0.2
Capsicum	3.0	0.3	2.9	0.0	0.1	0.2
Carrot	2.0	0.4	3.7	0.0	0.6	0.5
Cauliflower	4.0	0.5	3.3	0.0	0.4	0.2
Celery	3.5	0.9	6.6	0.0	1.9	0.3
Cucumber	1.0	0.4	1.5			
Lettuce	3.0	0.4	3.3	0.0	0.7	0.2
Lettuce oakleaf	2.5	0.3	3.2	0.0	0.6	0.2
Pea green	5.0	0.7	3.3	0.0	0.6	0.4
Pumpkin	1.8	0.4	2.5	0.0	0.4	0.2
Spinach	4.2	0.6	0.6	0.0	1.3	0.6
Sweetcorn	4.0	0.9	4.4	0.0	0.1	0.4

- Summary
- Good sampling
- Nutrient levels in desireable range
- Consider factors affecting nutrient uptake by crops:
 - Healthy roots
 - Irrigation management
 - Weather conditions
 - Crop stress
- Nutrient interactions
- Nutrient movement in soils
- Nutrient removal by crops

Soil Wealth

NURTURING CROPS

Thank You

Doris Blaesing, dorisb@rmcg.com.au

Gordon Rogers, gordon@ahr.com.au

Join us for the next webinar on plant analysis interpretation!

Horticulture Innovation Australia

www.soilwealth.com.au