

CROWN Centre for Recycling of Organic Waste and Nutrients

Australian Government Department of Agriculture and Water Resources

Unlocking the true value of organic soil amendments <u>David Rowlings,</u>

Ian Porter, David Riches, Scott Mattner, Daniele De Rosa, Johannes Biala, Wendy Quayle

The Nitrogen dilemma - A very leaky element

A great resource: Organic Amendments (OA) in Australia

- Intensive animal industries in Australia produce >3 million t/yr
- Contains 246,000 t of N, 88,000 t P & 359,000 t of K
 - Valued at \$1.9 billion/yr
- Few operations but large, centralised operations (e.g. >25 000 head of cattle)
 - Majority as poultry and beef feedlot
- Transport is major cost for use > 150 km economical?
- Wide price range 12/t raw feedlot \rightarrow >\$85/t composts
- Nutrient and liming value up to \$160/t
 - Co-benefits?
- Storage and processing largely unregulated
 - Little incentive to minimise losses
 - None for application

So what's the issue?

1. The product: How manure product is handled, stored, blended

- Age
- Weather/exposure
- Stockpiled, composted, turned, blended with carbon sources
 - Large potential nutrient losses particularly nitrogen
 - Estimated \$700k yr⁻¹ of N lost from this single composting operation
- → highly variable end product: what are you paying for?

Composting period \rightarrow

2. How much OA to apply?

	Target nutrient	Urban-derived	Feedlot manure	Composted chicken manure
	input	compost		
Application rate - Wet weight (tonne ha ⁻¹)	-	29	16.5	6
Application rate - Dry weight (tonne ha ⁻¹)	-	21.3	13.3	4.6
Total P (kg ha ⁻¹)	70	70	70	70
Total N (kg ha ⁻¹)	300	336	158	199
Total K (kg ha ⁻¹)	180	216	227	118

What about available (mineral) N?

 \rightarrow How do we avoid excess nutrients

Manure needed to apply 35 kg N ha ⁻¹ of available N upfront				
Stockpiled/Raw CM:	3.5 t/ha			
Composted CM:	19.0 t/ha			
Stockpiled/Raw FM:	2.5 t/ha			
Composted FM:	34.0 t/ha			

So what's the issue?

3. When is that nitrogen available (nutrient release curves) and matching plant demand

 \rightarrow Multiple applications

[—] Plant N uptake — Urea N

Accounting for Nitrogen

Accounting for the Plant available N (PAN) release from OA **Right balance between OAs and chemical fertilizer**

Accounting for Nitrogen

Accounting for the Plant available N (PAN) release from OA **Right balance between OAs and chemical fertilizer**

So what's the big issue?

What happens when we get it wrong?

Additional benefits – Soil Health

- Increased Nitrogen use efficiency
- Increased water use efficiency
- Increased infiltration/lower erosivity
- Pathogen resistance
- Soil C sequestration

Hard to quantify

Smart Farming partnerships: From waste to fertiliser – a farmer ready tool for the effective integration of manures and composts into farm fertiliser budgets for improved environmental, soil health and economic sustainability

Predicting plant nutrients release from soil organic amendments

Laboratory analysis

Predicting plant nutrients release from soil organic amendments

OA Nitrogen supply

OA Phosphorus supply

■ UD Compost ■ Pig manure Compost ■ Raw chicken litter