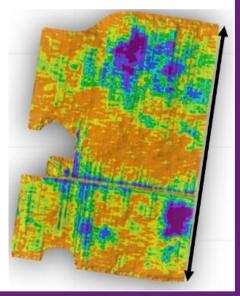

Precision agriculture technologies in vegetable production systems


John McPhee

Horticulture Centre Tasmanian Institute of Agriculture (TIA) University of Tasmania

TIA is a joint venture of the University of Tasmania and the Tasmanian Government

Precision agriculture mindset

- Do you want to be precise?
 - PA management won't fix problems caused by ignoring the fundamentals
- What is your **purpose**?
 - improved profit, reduce off-site effects, more uniform harvest
- What are your **priorities**?
 - irrigation, nutrition, drainage

Know your **WHY**

Site Specific Crop Management - SSCM

Practices and inputs applied to better match soil and crop requirements as they vary within the field

- the **right amount**
- in the **right place**
- at the **right time**

Knowing exactly where you are on the planet, and knowing exactly what you should be doing when you are there.

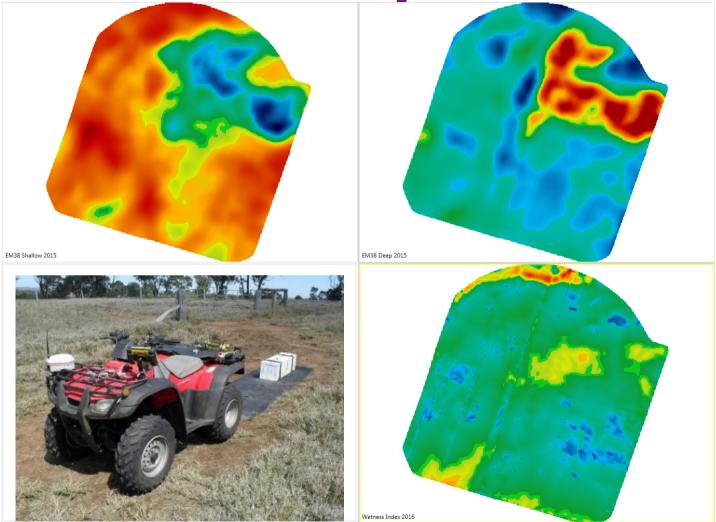
Why use SSCM?

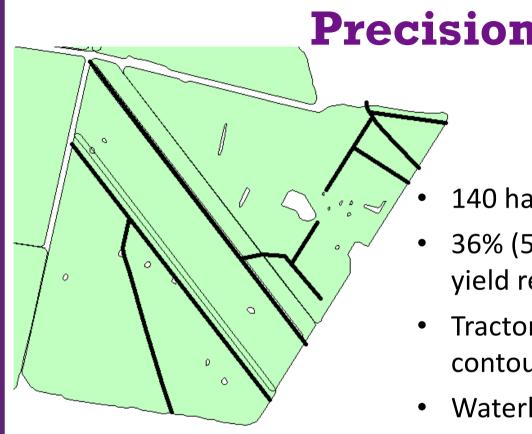
Natural within-field variability due to soil type/texture, structure, moisture content, nutrients, drainage...

Is it the right choice?

Differential treatment is based on:

- type of variation spatial or temporal?
- **degree of variation** is it economically important?
- cause(s) of variation do you know the cause?
- suitability for management intervention can you define management zones?


SSCM – the process


- **Observe variation** imagery, soil and yield mapping
- **Assess cause(s)** validation/ground-truthing
- **Provide timely and targeted treatment(s)** vari-rate application (nutrients, irrigation etc.)

Tools used

- **GNSS** geo-location and vehicle and implement guidance
- **Mapping** exclusion zones, EM38, pH, nutrients, DEM, spectral imagery, yield
- **Imagery** satellite, aircraft, UAV, ground-based
- Vari-rate (VR) controllers irrigation, fertiliser, seed
- Machine controllers drainage and land forming

Data layers

Precision drainage

- 140 ha, Inverleigh, Victoria.
- 36% (50 ha) suffered severe waterlogging, 75% yield reduction
- Tractor-generated RTK data used to produce contour map and develop drainage design
- Waterlogging damage reduced to 5% (7 ha)
- \$70,860 gross margin increase
- \$5,000 investment in drainage
- 14:1 ROI

precision Data and images from precisionagriculture.com

Vari-rate lime application

- 40 ha paddock, Hagley, Tasmania target pH 6.0
- Traditional approach (3 t/ha lime blanket rate) = 120 t
- VR approach (average rate = 0.7t/ha) = 27 t
- Lime cost = \$50/tonne (delivered & spread)
- Saving = 93 t or \$4,650 (78%)
- Mapping cost = \$600

6.8 - 7.1 pH

6.2 · 6.7 pH

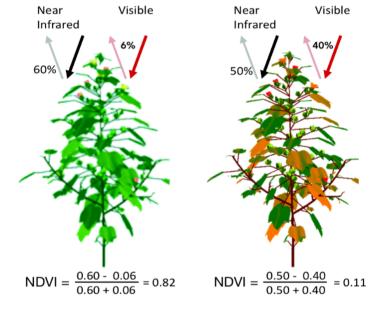
5.6 - 6.1 pH

5.3 - 5.5 pH

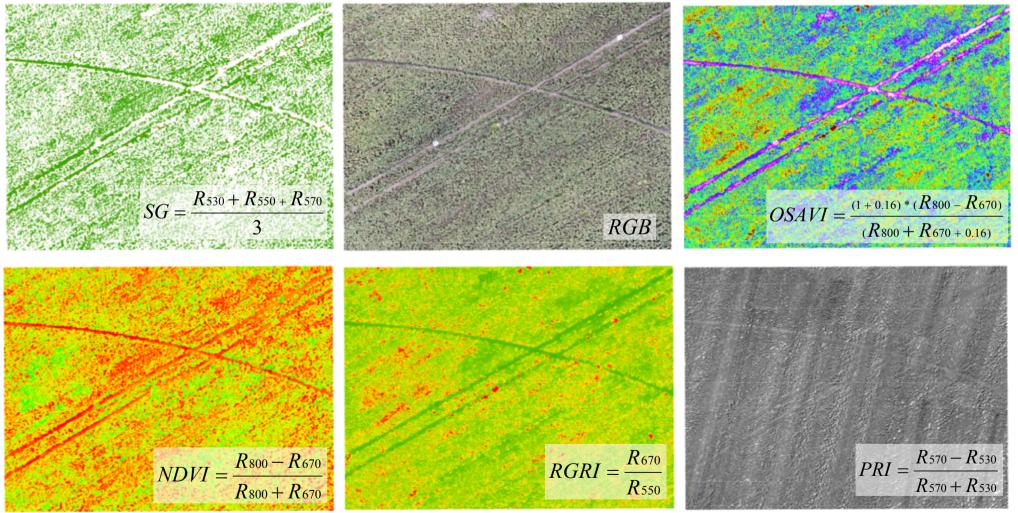
0.03 ha

12.48 ha 24.49 ha

3.03 ha


Total saving = \$4,050 (6.75:1 ROI)

precision Data and images from precisionagriculture.com


What is crop sensing

- Sensors measure Visible (Vis) and Near Infrared (NIR) light reflected by plants
- The amount reflected depends on the health of the plant
- Reflectance values are used to calculate vegetation indices such as Normalised Difference Vegetation Index (NDVI)

NDVI = NIR-Red/ NIR+Red

Spectral imagery – which index to use?

Images from Arko Lucieer, TerraLuma, UTAS

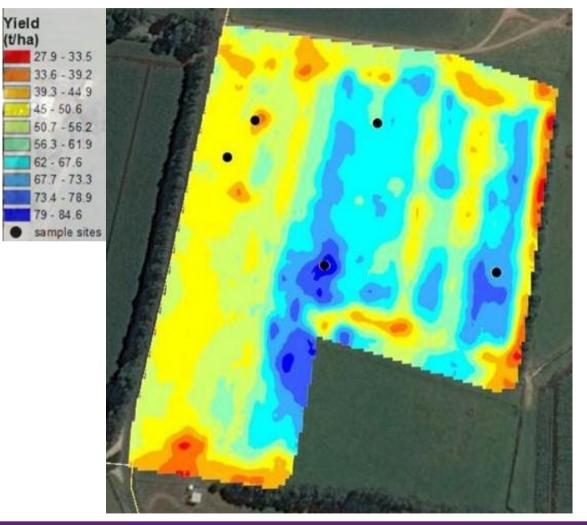
Crop sensing

Crop sensing platforms

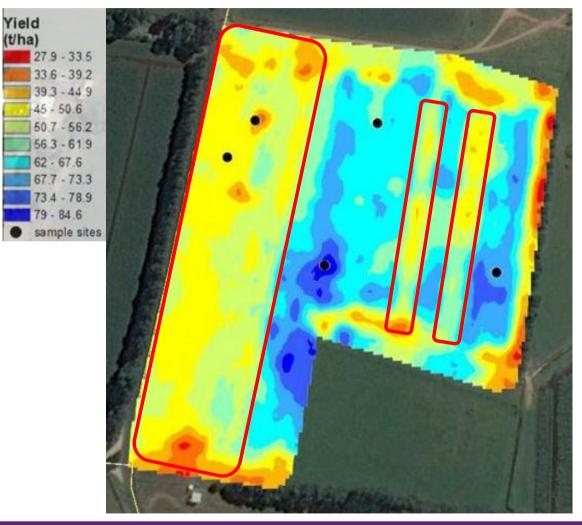
Satellite

- High resolution 0.3m 0.5m pixels
- Limited by cloud cover and imagery delivery time

UAV


- Resolution can vary
- Can mount different sensor types
- On-line processing
- Be aware of geo-location requirements for spatial accuracy

Ground-based


- Real-time display in the cab
- Data capture whenever in the field

Yield mapping

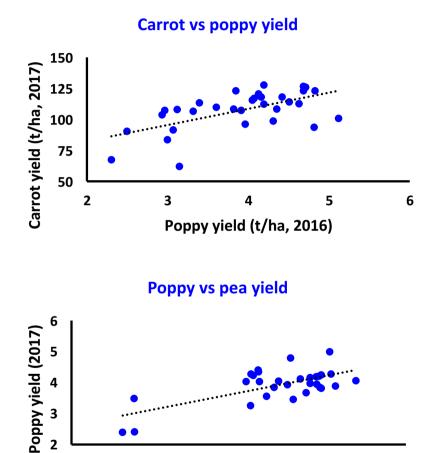
Simplot Image from Simplot Australia

Yield mapping

Simplot Image from Simplot Australia

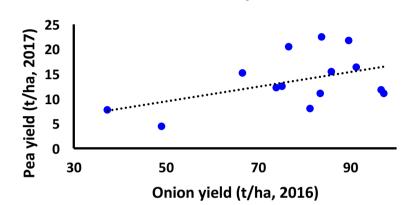
Locations

- Sisters Ck vegetables; linear
- Forth vegetables, poppies; linear
- **Hagley** grass seed, vegetables; pivot

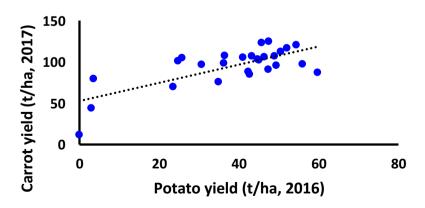


- Longford –
 vegetables, cereal,
 poppies; pivot
- Waterhouse seed potatoes, cereal, pasture; VR pivot

Tunbridge – poppies, garlic, cereal; pivot


Yield variability				
Сгор	Avg (t/ha)	Min (t/ha)	Max (t/ha)	Variation
Carrots	95	12	125	10.5 x
Potatoes	38	3	60	20 x
Seed potatoes	33	11	51	5 x
Seed potatoes	29	12	43	3.5 x
Peas	10	1	18	18 x
Onions	73	37	97	2.5 x
Poppies	4	2.5	5	2 x
Peas	8	3.5	10.5	3 x
Peas	8	3.5	10.5	3 x
Seed potatoes	49	10	75	7.5 x
Carrots	107	62	128	2 x
Poppies	4	2	5	2.5 x
Seed potatoes	29	4	47	11 x
Poppies	3	2	4.5	2.3 x

Yield across seasons and crops



Pea yield (t/ha, 2016)

Pea vs onion yield



PA Expo

